
Self Similarity, Contraction Mappings, and Distributed Deep Learning of
Neural Networks∗

Priyanka Kargupta† Kamalika Das‡ Hillol Kargupta§

Abstract

Distributed computing and its applications in many domains

such as machine learning and data analysis typically benefits

from problem decomposability. If a problem can be decom-

posed into sub-problems and the sub-problems can be solved

efficiently followed by the aggregation of the results from the

sub-problems then distributed computing often scales up.

This paper explores the notion of self-similarity and contrac-

tion mappings for constructing distributed representations

in the context of deep neural networks. It offers a mathe-

matical framework for constructing local similarity preserv-

ing representations using randomized contraction mappings

and their Banach fixed points. It also notes that the gra-

dient descent error minimization learning algorithms (e.g.

back-propagation algorithm) for deep neural networks can

be reduced to the problem of computing covariance matrix

in a distributed environment. The paper exploits locally

self-similar representations for designing communication ef-

ficient distributed inner product computation which in turn

is used for estimating covariance matrix from data observed

at different nodes. The results presented in this paper can

also be used for constructing a decomposed problem repre-

sentation even in machine learning problems from central-

ized data. The paper also presents experimental results in

order to support the theoretical analysis of the algorithm

presented here.

1 Introduction

Decomposing a problem into a set of sub-problems, solv-
ing these sub-problems in parallel, and combining their
results for putting together the final solution is the
essence of many scalable problem solving methodolo-
gies. Distributed computing and its applications in the
field of machine learning is no exception. Self-similarity
and contraction mappings offer a fundamental approach
toward creating a decomposable representation. Self-
similarity, in plain language, represents structures that
exhibit a similar kind of shape or similar properties
when a part of the original structure is zoomed in. Con-

∗Partially supported by DOT Contract DTRT5716C10001
†Mt. Hebron High School, Ellicott City, MD 21043
‡USRA, NASA Ames, Mountain View, CA 94035
§Agnik, 8840 Stanford Blvd, Ste 3500, Columbia, MD 21045

sider Figure 1, which shows the self-similar structures
in a leaf. By definition, a self-similar set can be di-
vided among a collection of subsets where each of these
subsets is similar to each other and the original set. A
self-similar object may be represented by the smaller
parts of the object. For example, the fern leaf shown in
Figure 1 may be represented using smaller self-similar
components of the leaf. In fact this observation is the
foundation behind fractal encoding and compression al-
gorithms [2]. This paper explores the application of
self-similar structures in distributed decomposed com-
putation of statistical properties relevant to machine
learning algorithms such as deep auto-encoder neural
networks.

Figure 1: Self-similar structures in a leaf.

This paper claims that machine learning problems
can be efficiently solved in a decomposed and dis-
tributed manner by creating self-similar representations
of the problem. The basic idea is that in order to learn
a function or a classifier involving an object like the
fern leaf shown in Figure 1, we may not need the entire
leaf. Since this leaf has self-similar structures, we may
be able to learn the function or the classifier just by
using a small part of the leaf structure that is similar
to the whole structure–thereby reducing the computa-
tional and communication cost of the machine learning
problem. This research develops a mathematical frame-
work to do so using randomized contraction mappings.
Contraction mappings [1] over a metric space intuitively
“contracts” the members of the domain. For example, if
we apply a contraction mapping to couple of locations
on a map then the distance between the transformed

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

locations will be less than the original distance between
those two locations. The new distance between the two
points will be reduced by a scaling factor less than 1.
An interesting property of contraction mappings is that
they are guaranteed to have a fixed point. In other
words, if we apply the contraction mapping repeatedly
on any member of the domain then they will all con-
verge to a unique point known as the fixed point of the
contraction mapping. This fixed point also stays invari-
ant when the contraction mapping is applied on that
fixed point. This property is also known as the Banach
fixed point theorem of contraction mappings. The paper
points out that the fixed point of a contraction mapping
can also be used to accurately compute statistical prop-
erties such as covariance in a distributed environment.

This paper specifically considers the problem of dis-
tributed deep learning of neural networks, showing that
learning in neural networks can be reduced to the co-
variance or inner product computation problem. It de-
velops a special class contraction mapping — random-
ized contraction mappings — and offers an algorithm to
learn the covariance structure of the data using the fixed
points of the local data under the randomized contrac-
tion mappings. The methodology offers a highly com-
munication efficient algorithm to learn deep multi-layer
auto-encoder/decoder neural network.

Section 2 summarizes the main contribution of this
paper. Section 3 offers the background material needed
for this paper. Section 4 discusses various useful results
regarding self-similarity and contraction mappings. Sec-
tion 5 develops the notion of randomized contraction
mappings. Section 6 explores randomized contraction
mappings in the context of auto-encoder neural net-
works. Section 7 discusses distributed learning of auto-
encoder neural networks using randomized contraction
mappings. Section 8 presents the experimental results.
Finally, Section 9 concludes this paper.

2 Contribution

This paper blends mathematical results from many
different areas and develops its own results. It draws
motivation from the topology literature in the area
of self-similarity and fractals. It also exploits results
from randomized embeddings literature such as large
random vectors are on average orthogonal to each other.
The paper combines many of these results along with
our current understanding of distributed computing
for machine learning and data mining. The main
contributions of this work are as follows:

1. Develop a mathematical framework for construct-
ing randomized contraction mappings.

2. Exploit the fixed points of randomized contraction

mappings in order to estimate statistical properties
such as covariance.

3. Combine auto-encoder neural network with ran-
domized contraction mappings in order to create
the so called ANRC (Auto-Encoder Neural network
with Randomized Contraction) networks.

4. Prove that ANRC networks are contraction map-
pings on average.

5. Prove that the incorporation of randomized con-
traction mappings in an auto-encoder neural net-
work does not change the structure of the weight
matrix on average. In other words, the network
topology and weights stay invariant on average even
after the randomized contraction mapping is ap-
plied to the input data.

6. Develop a distributed algorithm for learning the
weights in an auto-encoder network.

The following section presents a review of the related
literature.

3 Background

Constructing a decomposed representation of a problem
has been close to the heart of artificial intelligence and
machine learning research from the very early days of
the field. Simon’s [10] discussion on the architecture of
complexity pointed out the need for quasi-decomposable
representations for efficient problem solving. Holland
[7] offered a similar perspective in natural and artifi-
cial systems. The field of neural networks has also been
deeply connected with distributed and parallel process-
ing right from the beginning. For example, one of the
early work in multi-layer neural network by Rumelhart
[9] underscored the parallel and distributed processing
of information in natural and artificial neural networks.
There exists a relatively large body of literature on dis-
tributed processing of neural networks. There also ex-
ists a large body of literature on distributed machine
learning and data mining [8]. The following part of this
section presents a brief overview of the relatively recent
literature of the work on multi-layer neural networks.

Dean et al. [4] used a distributed approach involv-
ing DistBelief, a framework utilizing model parallelism
within and across machines with the details of paral-
lelism, synchronization, and communication managed
by the framework. Within the framework, two algo-
rithms were developed for large-scale distributed train-
ing: (i) Downpour SGD, asynchronous stochastic gradi-
ent descent procedure which leverages adaptive learning
rates and supports a large number of model replicas and
(ii) Sandblaster L-BFGS, a distributed implementation

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

of the L-BFGS algorithm that uses both data and model
parallelism.

Black et al. [5] details the basics of distributed
training of neural networks and various algorithms used
for training, some of which include parameter averag-
ing, asynchronous stochastic gradient descent with soft
synchronization protocols, and decentralized stochastic
gradient descent.

Dong et al. [6] proposes a DDRL model, a hier-
archical structure set up on distributed resources de-
signed to abstract the layer-wise image feature informa-
tion.The model extracts random patches on the multi-
ple Map nodes, pre-processes using PCA, uses K-means
for learning the dictionary, employs spatial pooling on
the extracted features, and produces feature maps that
are inputted to the second layer where k-means is used
again. The last layer uses the dictionary to extract im-
age features to use as input to train the SVM for clas-
sification.

Zhang et al. [12] keeps track of the staleness asso-
ciated with each gradient computation and adjusts the
learning rate on a per-gradient basis by simply dividing
the learning rate by the staleness value using the pro-
posed ASGD algorithm. The algorithm automatically
tunes the learning rate based on gradient staleness us-
ing an N-softsync protocol and achieves model accuracy
comparable with SSGD while providing a near-linear
speedup in runtime.

Strom [11] introduces a new method for scaling up
distributed stochastic gradient descent training of deep
neural networks that controls the rate of the weight-
update per individual weight which reduces the amount
of communication by three orders of magnitude while
training a typical DNN for acoustic modelling.

Chen et al. [3] demonstrates that synchronous op-
timization with backup workers can avoid asynchronous
noise while mitigating for the worst stragglers as asyn-
chronous stochastic optimization emphasizes speed by
using potentially stale information for computation
which can result in poorer trained models.

The work presented here is very different from the
existing body of literature listed above. The current
work explores a mathematically well-grounded method-
ology to bound the communication among different
nodes for computing statistical properties. The follow-
ing section discusses the foundation material for self-
similar sets and contraction mapping.

4 Self Similarity and Contraction Mapping

Most practical supervised and unsupervised machine
learning problems can be represented as function learn-
ing problems. Learning functions can be efficient and
scalable when the function can be decomposed into a

set of sub-functions so that each sub-function can be
computed efficiently in parallel. The results are then
aggregated to produce the final result. Note that since
functions can be viewed as sets in the function space, we
can use a set theoretic framework whenever appropriate
without losing any generality.

Self-similar sets offer some interesting properties
that may allow efficient computation of functions over
these sets. Let us first define self-similarity in mathe-
matical terms and then explore some of these properties.

Definition 4.1. (Infinitely Separable Self-Similarity)
A set F is self-similar to each subset fi with respect
to a characteristics Ψ(.) if Ψ(F) ∼ Ψ(fi) and F is
infinitely separable, i.e.

F = {f11 , f12 , · · · f1i · · · f1n},
f1i = {f21 , f22 , · · · f2i · · · f2n},

· · ·
fkj = {fk+1

1 , fk+1
2 , · · · fk+1

i · · · fk+1
n }where k + 1→∞

Consider an indicator function Iψ(F) that returns a
value of 1 if Ψ(F) is true and 0 otherwise for the set F .
Since the characteristic property stays invariant across
all the subsets fki , one may evaluate the function Iψ(F)
by evaluating Iψ(fki). If necessary, further statistical
significance can be gained by evaluating Iψ(fki) for
different values of i and k. In other words, for any
self similar set F , a task that involves evaluating the
indicator function Iψ(F) can be accomplished by using
any subset of the self-similar subsets fki .

Note that if |F | and |fki | denote the cardinalities of
the sets F and fki respectively then F = |f11 | + |f12 | +
· · · |f1i | · · ·+|f1n| and |f1i | = |f21 |+|f22 |+· · ·+|f2i |+· · · |f2n|.
Therefore, |F | ≥ |fki . In other words, evaluation of the
indicator function can potentially be performed using a
smaller number of data points compared to the original
set F . This is main idea behind this paper—If the data
set has self-similarity then the self-similar subsets can
be used to compute statistical quantities. Although
self-similarity is widely prevalent in many data sets,
one could philosophically argue even a stronger claim—
unless there is local self-similarity and pattern in the
data, problem solving (particularly machine learning)
is not computationally tractable [10]. We will revisit
this observation later in this paper in order to develop
communication efficient distributed machine learning
algorithms.

Next, we consider contraction mappings and relate
those with self-similarity. Contraction mappings pro-
vide useful properties for creating similarity preserving
decomposed representations.

Definition 4.2. (Contraction Mapping) If (Θ, d)

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

and (Θ′, d′) are two metric spaces, a contractive map-
ping is a function θ : Θ→ Θ′ such that d′(θ(x), θ(y)) ≤
cd(x, y) for all x, y ∈ Θ and the contractivity factor
c < 1.

Figure 2: (Top) Original data X set in a 2D space.
(Middle) The transformed data set θ(X). (Bottom)
Twice transformed data set θθ(X)). The graphs show
the gradually contracting data toward the fixed point.

Consider a two dimensional Euclidean space and a
contraction mapping defined by θ(x, y) = (x2 ,

y
2). Figure

2 (top) shows a set of randomly chosen data set where
x, y ∈ [0, 1]. Figures 2 (middle and bottom) shows the
data after the contraction mapping is applied once and
twice.

By Banach’s fixed point theorem, a contractive
mapping is guaranteed to a unique fixed point u such
that Θ(u) = u. If we are interested in finding a
contractive mapping that maintains the invariance of
a given target point v then we can pose the problem as
follows:

Definition 4.3. Given an element v ∈ F , find a
contraction mapping Θ : F (X)→ F (X) with fixed point
ū such that d(v, ū) is as small as possible.

The following theorem (known as Collage Theorem [2]
has found many applications in different domains and
it is also useful in the context of this current paper.

Theorem 4.1. Given an element v ∈ F and a contra-
cion mapping Θ : F (X)→ F (X) with fixed point ū and
a contractivity factor c,

d(v, u) ≤ 1

1− c
d(v,Θv)

This allows us to pose the problem as a search for
a contractive mapping Θ so that the Collage error
d(v,Θv) is minimized.

Lemma 4.1. Given v1, v2 ∈ F and a contracion map-
ping Θ : F (X) → F (X) with fixed point ū and a con-
tractivity factor c,

d(v1, v2) ≤ 1

1− c
(d(v1,Θv1) + d(v2,Θv2))

Proof: By triangle inequality

d(v1, v2) ≤ d(v1, u) + d(v2, u)

Using Theorem 4.1, we can write

d(v1, v2) ≤ 1

1− c
d(v1,Θv1) +

1

1− c
d(v2,Θv2)

=
1

1− c
(d(v1,Θv1) + d(v2,Θv2))

�
For a given set of points F , one can generalize the

problem of finding a set of invariant domain members
to the problem of finding a set of contractive mappings
Θ = Θ1,Θ2, · · ·ΘN where each Θi is defined over F such
that for a unique set A = {A1, A2, · · ·AN} and A ⊂ F ,

Ai = Θ(Ai)

Using the set notation, we can write

Θ(A) = A.(4.1)

In other words, set A is self-similar. Equation 4.1
can be used to generate self similar subsets of F using
contraction mappings.

5 Randomized Contraction Mappings

This section explores a special class of contraction map-
pings that are generated using randomized algorithms.
It specifically considers linear transformations defined
over an inner product space where entries of the trans-
formation matrix are random variables. The paper
makes use of these randomized contraction mappings
later in order to develop distributed algorithms for
training deep neural networks.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 5.1. (Randomized Contraction Mapping)
Let V be an m × k dimensional matrix where the
(i, j)−th cell of V , Vi,j ∈ {−

√
c/k,

√
c/k} with uniform

probability. On average, V is a contraction mapping if
0 ≤ c < 1.

Proof: Note that the expected value,

E[V V T] = cI

Where I is the identity matrix.
If X is an m×n dimensional matrix where each row

is drawn from an inner product space, let X ′ = V TX.
Therefore,

E[(X ′)TX ′] = E[XTV V TX]

= XT (cI)X

= c(XTX)

Therefore, V is a contraction mapping.
�

Let us now explore what we can do with these
contraction mappings, specifically the randomized con-
traction mappings. The rest of this section argues
that fixed points of randomized contraction mappings
can be effectively used to estimate the covariance ma-
trix. For mean zero random variables, we can write:
Cov(x, y) = 1

m

∑m
k=1 xkyk.

Now, consider a contraction mapping θ defined over
the 2-dimensional space created by the two random
variables x and y. Let (x, y) be the values of the random
variables x and y respectively, corresponding to the
fixed point of the contraction mapping θ. Therefore,
as we apply the contractive mapping repeatedly on the
domain members,

Cov(x, y)→ 1

m

m∑
k=1

x.y = x.y

6 Learning an Autoencoder Neural Network

Consider a linear autoencoder as shown in Figure 3.
It embeds the input feature vector X1 to X2 using a
linear mapping such that X2 = W2X1. Usually, this
encoding step embeds the input feature vector to a
lower dimensional space. The next step is to decode
that to the output space Y = W1X2. Therefore
Y = W1W2X1.

Theorem 6.1. If X ′ = V TX and Y = W1W2X1

represents an autoencoder network and V is an m × k
dimensional matrix where the (i, j)−th cell of V , Vi,j ∈
{−

√
c/n,

√
c/n} with uniform probability then a linear

autoencoder network is a contraction mapping when the
input data is transformed using the matrix V .

Figure 3: Autoencoder network with weight vector W1

and W2 in the outer and inner layer respectively.

Proof:

YTY = X′T
1 W

T
2 W

T
1 W1W2X

′
1

= X′T
1 (W1W2)T (W1W2)X′

1

= X′T
1 X

′
1

= (V TX1)T (V TX1)

Therefore, we can write:

E[YTY] = E[XT
1 V V

TX1] = XT
1 cIX1 = cXT

1 X1

�
The same result is also true for non-linear auto-

encoders where the output values of a neuron are passed
through a nonlinear function such as a logistic or a
RELU function.

Theorem 6.2. If X ′ = V TX and V is an m × k
dimensional Randomized Contraction Mapping matrix
where the (i, j)−th cell of V , Vi,j ∈ {−

√
c/n,

√
c/n}

with uniform probability then a non-linear autoencoder
network is a contraction mapping when the input data
is transformed using the matrix V .

Proof:
Consider a non-linear auto-encoder where X2 =

W2X1 and the non-linear transformation is introduced
by X3 = G(X2). Similarly, for the outer layer, X4 =
W1X3 and Y = G(X4). We can write, X3 = G(W2X1),
X4 = W1G(W2X1), Y = G(W1G(W2X1)). Since it is
an auto-encoder, Y = X1. Therefore, we can write:

E[YTY] = E[XT
1 V V

TX1] = cXT
1 X1

�
So far, we have proved that both linear and non-

linear auto-encoder neural networks can be viewed as

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

a contraction mapping when the input data is trans-
formed using a randomized contraction mappings. Go-
ing forward, we shall use the term Auto-Encoder Neu-
ral network with Randomized Contraction (ANRC) for
implying this type of network architecture. In the fol-
lowing discussion, we prove that the weight matrix of
an ANRC network is on average identical to a regular
auto-encoder neural network with a small modification
in the learning equation.

Most multi-layer neural networks reported in the
literature learn the weights associated with the neurons
by gradient descent on the error surface. For example,
the Back-propagation learning law [9] works by mini-
mizing the error function,

E(W) =
1

2N

N∑
k=1

||T k −O(Xk,W)||2

Weight update equation for the single i-th node in
the output layer can be written as:

w
(t+1)
i = w

(t)
i +

η

N

N∑
k=1

(t(k) −
∑
j

w
(t)
i,jx

(k)
j)x

(k)
i

= w
(t)
i +

η

N

N∑
k=1

(t(k)x
(k)
i −

∑
j

w
(t)
i,jx

(k)
j x

(k)
i

Weight update equation for the complete outer layer
can be written using matrix notation as follows:

W(t+1) = W(t) +
η

N

N∑
k=1

(T(k)X(k) −

W(t)(X(k))TX(k))(6.2)

We can now prove the following theorem.

Lemma 6.1. If V is a randomized contraction map-
ping matrix so that Vi,j ∈ {−

√
c/n,

√
c/n} with uni-

form probability, the weight matrix of a ANRC network
learned based on Equation 6.2 remains invariant when
the input data set X is replaced by VTX , corresponding
target output is VTT(k), and the learning rate is η

c .

Proof:

W(t+1) = W(t) +
η

cN

N∑
k=1

(T(k)VVTX(k) −

W(t)(X(k))TVVTX(k))

Recall that E[VTV] = cI. Substituting that in the
above equation, we get,

E[W(t+1)] = W
(t)
i +

η

N

N∑
k=1

(T (k)X(k) −

W
(t)
i (X(k))TX(k))

The above equation is identical to Equation 6.2.
�
The above result can be easily proved for the

learning equation in the hidden layers. The proof is
very similar to the one presented here for the output
layer. Now that we have proved that the weight matrix
of the ANRC network is identical to that of the regular
auto-encoder network on average, we can conclude
that the introduction of the randomized contraction
mapping for transforming the data matrix does not
change the outcome of the learned model on average.
In the following section, we argue that the randomized
contraction mapping however, provides a major benefit
in creating a distributed decomposed representation of
the underlying learning problem and thereby results
in scalable communication efficient machine learning of
auto-encoder networks.

7 Distributed Autoencoder Network Learning

This section considers the problem of learning an au-
toencoder network in a distributed environment. Con-
sider a distributed environment with p data sources.
Let Xi be the row vector of features observed from the
i-th data source. X1,X2 · · ·Xp be the features vec-
tors observed at data sources 1, 2, · · · p respectively. Let
ni be the number of features observed at source i and∑p
i=1 = n. The weight update equation for multiple

node scenario can be written as follows:

W(t+1) = W(t) +
η

N

N∑
k=1

(T (k)[X
(k)
1 · · ·X(k)

p]−

[W
(t)
1 · · ·W(t)

p][X
(k)
1 · · ·X(k)

p]T [X
(k)
1 · · ·X(k)

p])

= W(t) +
η

N

N∑
k=1

(T (k)[X
(k)
1 · · ·X(k)

p])−

η[W
(t)
1 · · ·W(t)

p]Cov(X)

Where Cov(X(k)) is the sample covariance matrix
computed over the training data set after a mean-zero
translation. Therefore, the weight update equation can
be reduced to the following items:

• The
∑N
k=1 T

(k)[X
(k)
1 · · ·X

(k)
p] term and

• Cov(X)

The first item is a linear term and can be additively
decomposed among the p nodes and then aggregated
in O(p) communication complexity. The second term
involves computation of the covariance matrix and
efficient computation of that requires further discussion.

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

7.1 Distributed Covariance Computation Note
that the computation of Cov(X) requires computing
the inner product of the input feature vector observed at
different nodes. The naive approach computes the inner
product between two n dimensional vectors stored at
different nodes in O(n) communication. Bring elements
of the data vector to a single node in O(n) and then
compute the inner product in O(n) time. Over k
training examples, estimation of a single term in the
covariance matrix requires O(kn) communication.

Table 1: Naive randomized algorithm for inner product
computation

1. Let δi ∈ {−1, 1} with equal probability.
2. Repeat the following steps for j = 1, 2, · · ·m.

Compute A′ = A1δ1, A2δ2, · · ·Anδn and
B′ = B1δ1, B2δ2, · · ·Bnδn
Compute SA,j =

∑
iA

′
i and SB,j =

∑
iB

′
i

Send the scalar data item SA to the node lB
and compute Ij = SA,jSB,j .

3. Compute P = 1
k

∑k
j=1 Ij . P is an estimator

of the inner product between A and B.

7.2 Naive Randomized Algorithm for Covari-
ance Estimation The inner product between two data
vectors A = A1, A2, · · ·An and B = B1, B2, · · ·Bn ob-
served at two different nodes lA and lB can be computed
with much less communication cost using different tech-
niques. Table 1 shows a simple randomized algorithm
to compute the inner product between two vectors ob-
served at two different nodes. The algorithm simply
flips the sign of the data items in each vector identically
with uniform probability. This can be accomplished by
using the same seed for the pseudo-random number gen-
erator at each site. The randomly perturbed data items
are then added up and the resulting scalar is sent to
the other site or to the central site that is computing
the inner product. The two scalars are multiplied and
averaged over m trials. The final averaged result is an
estimator for the inner product of the two vectors A
and B. This randomized algorithm estimates the inner
product in O(m) communication.

7.3 Contraction Mapping for Covariance Esti-
mation The problem with the naive algorithm pre-
sented in the previous section is that it does not ex-
ploit advantage of any self-similarity in the data set.
The contraction mapping-based framework discussed in
this paper can be effectively used to further reduce the
communication further by exploiting the inherent self-
similarities in the data set used for learning the auto-

encoder network. Rest of this section discusses the al-
gorithm.

Recall from Theorem 4.1 that d(v, u) is upper
bounded. Also, from Theorems 6.1, 6.2, and Lemma
6.1 we observe that an ANRC network minimizes the
collage error for the data tuples in the training data
set. Therefore, the contraction mapping of an ANRC
network must satisfy the inequality in Theorem 4.1.
Table 2 shows the algorithm for distributed covariance
estimation.

Table 2: Covariance estimation.
1. Initialize set S = ∅.
1. Generate a set of randomized contraction

mappings V1, V2, · · ·Vk.
2. Select the contraction mapping Vi that

minimizes the collage error over the given
data set X.

3. Compute the fixed point ui of
Vi and set S = S ∪ ui.

4. Compute an estimate of the covariance matrix
using the members of the set S. Repeat steps
1, 2, and 3 until the covariance matrix converges.

7.4 Distributed Auto-Encoder Learning Table
3 shows the pseudo code for the proposed algorithm.
The distributed ANRC algorithm essentially exploits
the self-similarity in the data set using randomized
contractive mappings. It selects the optimal mapping
that minimizes the collage error over subsets of the
training data sets. If the auto-encoder is trained using
an already available training data set in the batch mode
then data subsets can be selected using various schemes.
The simplest scheme would be a random selection
of data points with uniform probability. However,
that approach fails to recognize the local self-similarity
properties often exhibited in many applications such as
image processing. Therefore, dividing the data points
based on proximity makes sense. For example, one may
select data points for a subset by dividing the image in a
grid structure and choosing the points that fall within a
single cell of the grid for one subset. Each subset would
correspond to a cell in the grid. Fixed points for each
subset is computed and shared with the remote nodes
for computing the cross-terms in the network weight
matrix.

If the data set is not available in the batch mode and
the learning problem is essentially an online incremen-
tal one then one may have to incrementally build the
estimates of the covariance matrix needed for comput-
ing the cross-terms in the weight matrix. As new data
points come in, the new updates of the fixed points for

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

the randomized contraction mappings become available
and once the fixed points converge, those can be prop-
agated to the remote nodes.

Table 3: Distributed learning in an ANRC network.
1. Construct an ANRC network.
2. Select a representative set of randomized

contraction mappings and update the local
weights as usual.

3. Send the fixed points of the contraction mappings
to the remote sites and update the coss-terms in
the weight.

4. Repeat steps 2 and 3 until the network converges.

8 Experimental Results

This section presents experimental results in order to
back up the analytical claims of this paper. Figure 4
(Top) shows the original data set in a 10 dimensional
space. It shows the density plot of the data. Figure 4
(Bottom) shows the density plot of the transformed data
set using a randomized contraction mapping. Figure 5
(Top) shows the correlation matrix of the original data
set. Figure 5 (Bottom) shows the correlation matrix
computed using the fixed points of the transformed
data set. As the figure shows, the estimation of the
covariance matrix (we show the normalized correlation
matrix since it has normalized values) obtained using
the proposed approach appears to be good.

The following part of this section explores a larger
data set widely used for image classification benchmark-
ing using deep neural networks. Tiny Imagenet has 200
classes of animals, humans, buildings, and other objects.
Each class has 500 training images, 50 validation im-
ages, and 50 test images. Both class labels and bound-
ing boxes are provided as annotations for the training
and validation sets. In order to test the distributed
algorithms, we introduced copies of these images after
making different linear transformations (e.g. rotation,
translation, scaling) and distributed the different trans-
formed copies of the same image among different nodes.
The goal is to create a test environment with multiple
nodes observing different but related images. For exam-
ple, if I represents the original image and I1, I2, · · · In
represent the different copies of I under various linear
transformations then these transformed images are dis-
tributed among different compute nodes. Amazon Web
Service (AWS) EC2 instances (g2.2x.large) with GPU
modules are used for this experiment. We used a hub
and spoke distributed computing architecture for the
experiments. Since a pure auto-encoder network is an
unsupervised learning network, Figure 6 shows the vari-

Figure 4: (Top) Original data set in a 10 dimensional
space. (Bottom) The transformed data set using a
randomized contraction mapping.

ation of accuracy with respect to the amount of data
communicated through fixed points.

9 Conclusions

This paper explored the fundamental problem creat-
ing distributed and decomposed representation of func-
tions in the context of machine learning—specifically for
learning auto-encoder neural networks. It noted that
decomposing a problem among sub-problems and dis-
tributed problem solving requires identifying the pat-
terns in the data and exploiting those to construct an
appropriate representation. Self-similarity is a com-
mon phenomenon observed in many data set. Particu-
larly in image classification involving natural scenes self-
similarity is often abundant. The paper borrowed ideas
from topology theory, dynamical systems, and random-
ized algorithms in order to develop a distributed algo-
rithm for learning auto-encoders.

The paper developed the notion of randomized con-
traction mapping and showed that an auto-encoder neu-
ral network along with input layer transforming the in-
put data using randomized contraction mapping min-

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Figure 5: (Top) Correlation matrix of the data pre-
sented in Figure 4. (Bottom) Correlation matrix of
the transformed data using the randomized contraction
mapping.

Figure 6: (Accuracy vs. number of fixed points com-
municated per node. A classifier is learned using the
ANRC network and the corresponding accuracy on the
test data set is reported. Results show that highly accu-
rate classifiers can be learned by communicating a small
number of fixed points generated using the grid-based
subset selection approach described in this paper.

imizes the collage error over the training data points.
The paper also proved that this does not however change
the topology and the values of weight matrix on aver-

age. This is desirable since this property makes sure
that the introduction of randomized contraction map-
ping for developing a distributed decomposed version
of the learning problem does not change the functional
behavior of the original problem. The developed dis-
tributed algorithm makes use of the fixed points of the
randomized contraction mappings in order to efficiently
learn the auto-encoder network.

This work opens up many new future directions.
More detailed analytical work bounding the variance
of the expectation-based results presented in this paper
and extending the results beyond auto-encoder networks
are some examples.

References

[1] Banach, S. (1922). Sur les oprations dans les ensembles
abstraits et leur application aux quations intgrales.
Fund. Math. 3, 133-181.

[2] Barnsley, M. and Sloan, A. (1986). A better way to
compress images. Byte 13 (1), 215-223.

[3] Chen, J., Monga, R., Bengio, S., and Jozefowicz, R.
(2016). Revisiting distributed synchronous SGD. arXiv
preprint arXiv:1604.00981.

[4] Dean, J., Corrado, G., Monga, R., Chen, K., Devin,
M., Mao, M. et. al. . (2012). Large scale distributed
deep networks. In Advances in neural information
processing systems (pp. 1223-1231).

[5] Black A., and Kokorin V. Distributed Deep Learning,
Part 1: An Introduction to Distributed Training of
Neural Networks. Skymind. 2016.

[6] Dong, L., Lv, N., Zhang, Q., Xie, S., He, L. and
Mao, M. (2016). A Distributed Deep Representation
Learning Model for Big Image Data Classification.
arXiv preprint arXiv:1607.00501.

[7] Holland, J. (1975). Adaptation in Natural and Arti-
ficial Systems: An Introductory Analysis with Appli-
cations to Biology, Control and Artificial Intelligence.
MIT Press Cambridge, MA, USA.

[8] Kargupta, H. Chan, P. (2000). Advances in Distributed
and Parallel Knowledge Discovery. MIT Press Cam-
bridge, MA, USA.

[9] Rumelhart, D. E. and McClelland, J. (1986). Parallel
distributed processing: explorations in the microstruc-
ture of cognition, vol. 1: foundations. MIT Press Cam-
bridge, MA, USA

[10] Simon H.A. (1962) The Architecture of Complexity.
In: Facets of Systems Science. International Federation
for Systems Research International Series on Systems
Science and Engineering, vol 7. Springer, Boston, MA

[11] Strom, N. (2015). Scalable distributed dnn training us-
ing commodity gpu cloud computing. In Sixteenth An-
nual Conference of the International Speech Commu-
nication Association.

[12] Zhang, W., Gupta, S., Lian, X. and Liu, J. (2015).
Staleness-aware async-sgd for distributed deep learn-
ing. arXiv preprint arXiv:1511.05950.

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

